SIMPLIFYING Thermal Conductivity (k)

FAST, ACCURATE TESTING 0 to 500 W/mK in seconds

WIDE TEMPERATURE RANGE -50° to 200°C

NO SAMPLE PREPARATION Unlimited sample size

NON-DESTRUCTIVE Leaves sample intact

EASY-TO-USE No user-calibration required

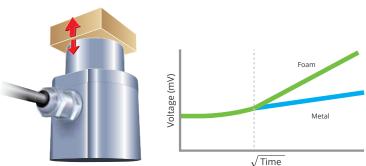
HIGHLY VERSATILE Tests solids, liquids, powders and pastes

MODULAR Configurable to meet a range of needs and budget Option to pair with new dilatometer

ALSO PROVIDES: EFFUSIVITY | DIFFUSIVITY | HEAT CAPACITY | DENSITY

SIMPLIFYING THERMAL CONDUCTIVITY

The latest generation of C-Therm's patented technology expands the capabilities of this rapid, non-destructive thermal conductivity and effusivity testing instrument to a whole new level. Designed to provide simple, highly accurate thermal characterization for lab, quality control and production environments, the C-Therm TCi Thermal Conductivity Analyzer requires no user-calibration or sample preparation. The system has broad testing capabilities (0 to 500W/mK) across a wide range of temperatures (-50°C to 200°C).


The TCi can be equipped with one or two sensors for increased capacity, and provides accurate thermal analysis of solids, liquids, powders and pastes in less time than any other instrument - less than 5 seconds! And because the procedure is non-destructive, samples remain intact, undisturbed and reusable after testing. The sensors offer users exceptional versatility in being able to operate in various environments, including thermal chambers, high pressure vessels and glove boxes.

Principles of Operation

The C-Therm TCi is based on the Modified Transient Plane Source (MTPS) technique. It employs a one-sided, interfacial heat reflectance sensor that applies a momentary constant heat source to the sample. Thermal conductivity and effusivity are measured directly, providing a detailed overview of the thermal characteristics of the sample.

How It Works

A known current is applied to the sensor's spiral heating element, providing a small amount of heat. This results in a rise in temperature at the interface between sensor and sample, which induces a change in the voltage drop of the sensor element. The rate of increase in the sensor voltage is used to determine the thermo-physical properties of the sample. The thermo-physical properties are inversely proportional to the rate of increase in the sensor voltage. The voltage rise will be steeper for more thermally insulative materials (foam). Results are displayed on the system's software in real-time.

The TCi is factory-calibrated for directly measuring both thermal conductivity (k) & thermal effusivity:

k & |

Effusivity = $\sqrt{k\rho c_{\mu}}$

Where: k = thermal conductivity (W/m • K) ρ = density (kg/m³) c_r = heat capacity (J/kg • K)

VERSATILE

EASILY TEST SOLIDS, LIQUIDS, POWDERS AND PASTES

APPLICATIONS

Nanomaterials

Insulation

Solids: Taking Ceramics to New Heights

C-Therm has provided a breakthrough in the characterization of critical performance attributes of ceramics used for aerospace applications. The main advantage for solids applications is the simplicity of the sample format. The C-Therm TCi eliminates technician time required for sample preparation. The sample size flexibility allows the evaluation of actual product formats - avoiding the need to mock-up samples.

Powders: From Explosives to Ink Toners

The C-Therm TCi is being used to safely test the stability, degradation, and shelf life of explosives because it is the only instrument engineered for evaluating the thermal conductivity of powders safely. Sample volumes are as small as 1.85ml. This is also critical to a rapidly growing client base in metal hydrides, where materials are expensive and available in low quantities. The technology is also migratable to manufacturing environments as a cost-effective way to monitor powder processes for moisture and homogeneity.

Pastes: Keeping the Hottest Electronics Cool

The faster and smaller microprocessors become, the more heat they generate. C-Therm technology is providing vital insights into the development of all materials that contribute to the overall thermal budget, including thermal interface pastes and compounds. By altering the calibration timing parameters the C-Therm TCi allows testing with different amounts of heat penetration. This feature results in a variable scale of scrutiny to probe the material to ensure the homogeneous distribution of vital filler components.

Liquids: Fluids That Take the Heat Off

The C-Therm TCi is helping manufacturers improve the heat transfer properties of advanced nano-filled liquids. For engineered liquids, the wide range of operating temperatures make the TCi an attractive solution. The low amount of heat introduced during testing and small sample volume requirements negate the convective errors typical in liquid testing with traditional techniques.

COMPARISON OF METHODS FASTER, EASIER, MORE VERSATILE

C-Therm TCi (Modified Transient Plane Source)

Hot Plate

Traditional Guarded Transient Plane Source

LaserFlash Diffusivity

Sample Preparation	None Required	Extensive	Some	Extensive
Testing Time	Seconds	Hours	Minutes	Hours*
Training Time	Minimal	Moderate	Significant**	Extensive
Non-Destructive	Yes	No	No	No
Method Development	⊛,®	8	8	8
RANGE				
k-Range (W/mK)	0 – 500	0 – 2	0 – 100 (100 – 500 requires C _p)	0 – 500 (requires density & C _p)
Temperature Range (°F) (°C)	-58° to 392°F -50° to 200°C	-148° to 2552°F -100° to 1400°C	-148° to 1292°F -100° to 700°C	-238° to 5072°F -150° to 2800°C
SAMPLE CONFIGURATI	ON			
Minimum	0.67" diameter (17mm)	6" x 6" (150 x 150mm)	Two Identical Samples 1" x 1" (25 x 25mm)	0.5" diameter (12.4mm 0.004" thick (1mm)
Maximum	Unlimited	24" x 24" (600 x 600mm)	Two Identical Samples Unlimited	0.5" diameter (12.4mm 0.004" thick (1mm)
Material Testing Capabilities	Solids, Liquids, Powders, Pastes	Solids	Solids, Liquids	Solids
PRICING	\$	\$\$	\$\$	\$\$\$

1 Based on publicly available information and feedback from users.

Calculation of thermal conductivity from Laser Flash Diffusivity Measurement requires the additional following material properties: heat capacity (C_o) density, and coefficient of thermal expansion. ** Traditional Transient Plane Source requires iterative testing to obtain the correct experimental parameters in terms of power flux, test time, and sizing of sensor necessary to obtain accurate results.

SCALABLE SOLUTIONS

ACCESSORIES

Compression Test Accessory (CTA)

Compression of sample material increases the density and impacts the effective thermal conductivity of the material. C-Therm's Compression Test Accessory (CTA) enables research-

ers testing such materials to precisely control the densification in providing highly reproducible results that better reflect the effective thermal conductivity of the sample material. The CTA is particularly recommended to users testing textiles/fabrics, insulation batting, thermal interface materials, and powders.

High Pressure Cell (HPC)

The High Pressure Cell safely provides researchers the capability to characterize the thermal conductivity of samples under controlled pressure environments up to 2,000 PSI (~138 bar). The HPC is popular with researchers

in the energy field, particularly in the characterization of gas hydrates.

Tenney Jr. Thermal Chamber

The TPS Tenney Jr. Thermal Chamber is recommended to users who wish to measure the thermal conductivity at non-ambient temperatures, from -50°C to 200°C. C-Therm's TCi 3.0 release software now enables direct control of the thermal

chamber, bypassing manual operation and allowing users to pre-program their desired temperature cycles and walk away!

Small-Volume Test Kit (SVTK)

The Small-Volume Test Kit was originally developed with the US Navy specifically for testing energetic materials. The effectiveness of the accessory in reducing the volume requirements for testing samples make it ideal

for characterizing the thermal conductivity of liquid samples. The SVTK is commonly applied in testing nano and heat transfer fluids, as well as emulsions.

DILATOMETRY MODULE

Dilatometry provides key expansion and shrinkage properties of materials under defined temperatures.

TEMPERATURE RANGE	Room Temperature to 1600°C
TEMP. RESOLUTION	0.1°C
MAX DISPLACEMENT	4mm
△I RESOLUTION	1.25nm/digit
ATMOSPHERE	Air, Vacuum, Inert Gas
SAMPLE DIMENSIONS	10 to 50mm long x max $\varphi 12mm$
SAMPLE HOLDER	Fused Silica, Alumina
CONFIGURATIONS	Single or Dual LVDT System 1200°C or 1600°C furnace
HEATING ELEMENT	FeCrNi, SiCr
RATE OF INCREASE (°C)	1°C/min to 50°C/min

C-Therm's latest generation TCi offers an innovative new option to pair the controller with an optional dilatometer. This offers researchers significant savings in leveraging commonalities of the TCi control electronics, while expanding the platform's capabilities to dilatometry.

THERMAL EXPANSION • PHASE TRANSITION SHRINKAGE • SINTERING

PROVEN

For over a decade, CTherm's innovative sensor technology has been pioneering the way many of the world's most prominent manufacturers, research facilities, and academic institutions test and measure thermal properties of materials.

The technology behind the C-Therm TCi represents a paradigm shift in thermal conductivity measurement and earned the inventor behind the technology the Manning Innovation Principle Award and an R&D 100 Award. These coveted awards are given to the top global innovators, and place C-Therm in the distinguished company of other winners, including developers of the ATM, Polaroid film, and anti-lock brakes.

Since its launch, C-Therm's unique technology has evolved to new levels of accuracy, speed, and flexibility. Today, it is being used around the globe for R&D, quality control, and on-line production monitoring in a wide range of industries.

C-THERM TCI SPECIFICATIONS

Thermal Conductivity Range	0 to 500 W/mK	
Test Time	0.8 to 2.5 seconds	
Minimum Sample Testing Size	17mm (0.67") diameter	
Maximum Sample Testing Size	Unlimited	
Minimum Thickness	Nominally 0.02" (0.5mm), dependent on thermal conductivity of material	
Maximum Thickness	Unlimited	
Temperature Range	-50° to 200°C (-58° to 392°F)	
Precision	Typically better than 1%	
Accuracy	Better than 5%	
Extra Hook-Ups Required	None	
Software	 Intuitive Windows®-based software interface. Easy export to Microsoft Excel®. Additional functionality offers indirect, user-input capabilities for a number of other thermo-physical properties including: Thermal Diffusivity Heat Capacity Density 	
Input Power	110-230 VAC 50-60 Hz	
Certifications	FCC, CE, CSA	

For more information, contact:

North America: 1-877-827-7623 Worldwide: 1-506-462-7201 info@ctherm.com | www.ctherm.com COMPANIES AND ORGANIZATIONS USING C-THERM'S PATENTED TECHNOLOGY:

IBM Whirlpool Pioneer **General Electric** Avery **Philip Morris** Astra Zeneca **US** Navy Patheon Universidade de Aveiro Raytheon Corning Engelhard Universidade Federal de Santa Caterina Wveth Stowe Woodward INSA **Dow Corning** Exxon Mobil **Hewlett Packard** NRC Liberec University National University of Singapore Petrobas Henkel Nanocomposix

Canadian Explosives Research Lab